Intel and Micron unveil 3D XPoint, a brand new memory technology
#1
copy and paste from
http://arstechnica.com/gadgets/2015/07/i...echnology/


Intel and Micron have unveiled what appears to be the holy grail of memory. Called 3D XPoint (pronounced "cross point"), this is an entirely new type of non-volatile memory, with roughly 1,000 times the performance and 1,000 times the endurance of conventional NAND flash, while also being 10 times denser than conventional DRAM.

The first 3D XPoint memory chips will be sampled "later this year," but there's no official timeline for commercialisation. Importantly, however, Intel and Micron say that 3D XPoint is "affordable," which means we might actually see it in consumer-grade devices. Other new memory technologies, such as phase-change memory, have so far proven too expensive to compete with gloriously cheap DRAM and NAND.

Image

So, what is this 3D XPoint thing?

Annoyingly, neither Intel or Micron are giving away technical details at this point. We've asked for a whitepaper or some kind of technical specification, but no dice.

In the words of Intel and Micron, 3D XPoint consists of a "transistor-less cross point architecture," where single-bit memory cells "sit at the intersection of word lines and bit lines." Intriguingly, and unlike NAND and DRAM, memory cells in 3D XPoint do not use electrical charge to store the binary value—but Intel and Micron won't say what they're using instead. If I had to guess, they're probably memristors.

In 3D XPoint, individual memory cells are read and written by simply applying a voltage to the appropriate word line and bit line. Unlike DRAM, there's no transistor governing each memory cell, which is one of the main reasons that 3D XPoint is (reportedly) much denser than DRAM.

If you look at the labelled image in the gallery above, it seems like each 3D XPoint die will have two layers of memory cells, and the dies will also be stackable for increased density. Intel and Micron are saying they've made individual 3D XPoint dies that can store 128Gb, which is very dense compared to state-of-the-art commercial DDR4 (8Gb per die), but not very dense compared to NAND (Micron itself is shipping 2Tb NAND dies).

Performance-wise, Intel and Micron make very bold claims: 3D XPoint is apparently "up to 1,000 times faster" and "has up to 1,000 times greater endurance" than commercial NAND chips.

If 3D XPoint isn't using electrical charge to store data, and is instead using a material that changes state, then the endurance figure is believable.

The performance figure is a bit trickier: when Intel and Micron say "faster," what do they actually mean? If the access time is 1,000 times faster than NAND, then that's actually quite believable. By way of comparison, DRAM latency is currently about 1,000 times faster than NAND. If 3D XPoint has 1,000 times more bandwidth than NAND, then we're probably back into fantastical-PR-claim territory.



Is this really the holy grail?

Over the years, a number of new memory technologies and architectures have been announced with much pomp and fanfare—RDRAM (Rambus), MRAM (magnetoresistive), ReRAM (resistive), PCM (phase-change memory), HMC (hybrid memory cube)—but so far, none of them have been able to unseat DRAM for main system memory or NAND flash for non-volatile storage. There are a number of reasons for this, but it mostly comes down to ease of manufacture and cost: DRAM and NAND are incredibly mature technologies that are dirt cheap to make.
Further Reading
HBM explained: Can stacked memory give AMD the edge it needs?

HBM brings a huge 1024-bit-wide bus with 512GB/sec on tap, plus lower power usage.

According to Intel and Micron, 3D XPoint is cost-competitive with both NAND and DRAM. This is a very bold claim for a new technology, but considering these are two of the biggest semiconductor manufacturers in the world, we have to give them some benefit of the doubt.

Intel and Micron say that 3D XPoint has already entered production, and that it will be sampled "later this year with select customers." Intel and Micron are developing their own products based on the new technology. Given that 3D XPoint is fast, but not as dense as NAND, it's not entirely clear what market segment will be tackled first. The labelled diagram suggests that 3D XPoint could serve as both system memory and storage, replacing DRAM and NAND, but that would be a bold first step.

More likely, we'll probably see some hybrid memory devices: sticks of memory that have both DRAM and 3D XPoint soldered on, or hybrid drives with NAND flash for mass storage and 3D XPoint providing a faster cache.
Reply
#2
I absolutely love things like this! you can't like hardware if this doesn't peek your interest.
Best thing is, its coming from Intel! they don't announce stuff without backing it up
Reply
#3
OMG this is freaking crazy! intel is sampling the technology, which means its got all the pieces in place, manufacturing etc...

"data can be read and written 1000 times faster than traditional NAND memory - and that it is ten times denser than normal memory too"

thats is rediculous!
"Intel claims that it is the biggest memory breakthrough since 1989, saying that:"

once this technology hits the market (consumer) everything we have now will seem outdated! EVERYTHING

a better technology website
http://arstechnica.com/gadgets/2015/07/i...echnology/
Reply
#4
Just seen the youtube video and this is basically one part of the jogsaw that IBM was talking about with the machine?
It's some sort of memristor, it is both system and strage memory, so in the future (less than 5 years?) you won't need seperate ram. can't believe its almost here, won't this change computer architechure and software like microsoft will have to be re written for this... exciting times
Reply

Logout Mark Read Team Forum Stats Members Help
Intel and Micron unveil 3D XPoint, a brand new memory technology0